Self-shielding effect for liq. xenon

S. Moriyama
Kamioka Observatory, ICRR,
University of Tokyo
13th December 2004 @ LRT2004

- XMASS experiment
- Self shielding effect for low energy ext. γ
- Demonstration: liquid xenon prototype det.
XMASS experiment

- XMASS
 - Xenon MASSive detector for Solar neutrino (pp$/\beta$/Be)
 - Xenon neutrino MASS detector (double beta decay)
 - Xenon detector for Weakly Interacting MASSive Particles (DM search)

Solar neutrino → Double beta → Dark matter
Strategy of the XMASS project

Prototype detector (FV 3kg) R&D
Confirmation of feasibilities of the 800kg detector

Demonstration of self shielding

800kg detector (FV 100kg)
Dark matter search

~1m

~30cm

~2.5m

~20 ton detector (FV 10ton)
Solar neutrinos
Dark matter search
Self shielding effect for low energy external gamma rays

- Super-K, SNO, and KamLAND are good examples.
- Photoelectric effect with large atomic number make the effect much stronger especially for low energy region.
Self shielding effect with liq. xenon

 Vertex (~light barycenter) reconstruction

 Large photoelectric coeff. for low energy γ

 → low BG deep inside the detector
Why there are very small number of BG events at the low energy region?

Answer: To leave ~100keV in the FV, high energy gamma ray need to penetrate long path.

Toy MC: 80cm diameter liquid xenon with U gamma rays

Initial 1760keV, 57keV deposited

Simulated 4.3x10^6 U decays on the sphere. Only 7 events recorded dep. energy <300keV & the light center in FV

Deep event with low energy deposit (Edep.) Very rare!
Fate of the events which give finite energy deposit in the FV.

Finite energy deposition in FV

<table>
<thead>
<tr>
<th></th>
<th>Edep in all vol. <300keV</th>
<th>Edep in FV <300keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light center FV</td>
<td>7 (last page)</td>
<td>272</td>
</tr>
<tr>
<td>Light center out FV</td>
<td>2</td>
<td>2276</td>
</tr>
</tbody>
</table>

Original energy 1760keV, Edep in FV 221keV, Edep in OV 1539keV

Even if Edep. in FV, additional Edep. change its energy deposit higher.

4.3x10^6 238U decay

○ Light barycenter
Demonstration of self shielding effect with 3kg FV prototype detector

- Demonstration of reconstruction, self shielding effect, and low background properties.
Vertex and energy reconstruction

Reconstruction is performed by PMT charge pattern (not timing)

Calculate PMT acceptances from various vertices by Monte Carlo.
Vtx.: compare acceptance map $F(x,y,z,i)$
Ene.: calc. from obs. p.e. & total accept.

$\log(L) = \sum_{PMT} \log\left(\frac{\exp(-\mu)\mu^n}{n!}\right)$

L: likelihood
$\mu = \frac{F(x,y,z,i)}{\sum F(x,y,z,i)} \times$ total p.e.
n: observed number of p.e.

$F(x,y,z,i)$: acceptance for i-th PMT (MC)
VUV photon characteristics:
$L_{\text{emit}} = 42\text{ph/keV}$
$\tau_{\text{abs}} = 100\text{cm}$
$\tau_{\text{scat}} = 30\text{cm}$

=== Background event sample ===
QADC, FADC, and hit timing information are available for analysis
Expected reconstruction performance in 10cm cubic fiducial volume

MC

100keV

500keV

10cm cubic FV events reconstructed well.
Source run
(γ ray injection from collimators) I

Very well reproduced.
Source run
(γ ray injection from collimators) II

Good agreements.
Self shield works as expected.
Photo electron yield ~ 0.8p.e./keV for all volume
Gamma ray shield

- Polyethylene (15cm)
- Boric acid (5cm)
- Lead (15cm)
- EVOH sheets (30 μm)
- OFHC (5cm)
- Rn free air (~3mBq/m³)

Rn concentration in the clean room ~10Bq/m³
External background source

- Background level was estimated from known sources

Dominant contribution: PMTs

- γ rays from outside shield
 - ~0.7 γ/cm2/s (>500keV)
- Low background PMTs
 - 238U series
 - 18+/−2mBq/PMT
 - 40K (incl. beta branch)
 - 140+/−20mBq/PMT
 - 232Th series
 - 6.9+/−1.3mBq/PMT
 - 210Pb in the lead shield
 - 250Bq/kg

Measured by HPGe
Main contribution from inner insulators and stem glass.
Background data

3.9 days livetime

REAL DATA

Event rate (kg/day/keV)

10⁻²/kg/day/keV

MC simulation

Aug. 04 run preliminary

~1.6 Hz, 4 fold, triggered by ~0.4 p.e.

Internal origins of background is negligible after FV cuts.

Good agreement (< factor 2)

Self shield effect can be seen clearly.

Very low background (10⁻² /kg/day/keV @100-300 keV)
Mis reconstruction: dead angle from the PMTs (only for this prototype detector)

The “wall effect”

- Scintillation light at the dead angle from PMTs give quite uniform 1p.e. level signal for PMTs.
- This cause mis reconstruction as if the vertex is around the center of the detector.
- Immersing PMTs into LXe and using spherical design solve this problem.
- It will give low BG in the ROI for DM search.
Further investigation of BG at low energy region

- By putting “PTFE light guide,” we can minimize the wall effect.
 - 10^{-2}/keV/kg/d, $E_{th} \sim 10$keV,
 - and ~ 3kg FV will be achieved.
- We can select events at the center of the detector by requiring balanced hits for 6 PMTs.
- Data will be taken in early next year.
Summary

- XMASS utilizes self shield to achieve low BG.
- R&D by 3kg FV prototype is well going:
 Demonstration of
 reconstruction, self shield, and low BG properties.
- 1/200 exponential dumping over 24cm for 662keV gamma ray demonstrated.
- $10^{-2} \text{ /kg/keV/day@} 100\text{keV}$ in 10cm cubic FV was achieved by self shielding effect. Origins of background is well understood.
- By utilizing this self shield effect, we are planning to build a ton scale LXe detector (dark matter search, see poster) and investigate for a future low energy solar neutrino detector.
Large improvements will be expected.

SI ~ 10-45 cm² = 10-9 pb
SD ~ 10-39 cm² = 10-3 pb

Plots except for XMASS:

http://dmtools.berkeley.edu
Gaitskell & Mandic
800kg (100kg FV) detector for DM Search

- Solve the miss reconst. prob. ➔ immerse PMTs into LXe
- Ext. γ BG: from PMT’s ➔ Self-shield effect demonstrated
- Int. BG: Kr (distillation), Radon ➔ Almost achieved
- Neutron: water or LS active shield (1/104) ➔ To be studied

“Full” photo-sensitive, “Spherical” geometry detector

- External γ ray (60cm, 346kg)
- External γ ray: 8x10$^{-5}$/keV/kg/d (40cm, 100kg)

- 7Be Dark matter
 (10$^{-6}$ pb, 50GeV, 100 GeV)
- Q.F. = 0.2 assumed

- \sim800-2” PMTs (1/10 Low BG)
- 70% photo-coverage \sim5p.e./keVee